584 research outputs found

    Simultaneous H.E.S.S. and RXTE observations of the microquasars GRS 1915+105, Circinus X-1 and V4641 Sgr

    No full text
    Microquasars, Galactic binary systems showing extended and variable radio emission, are potential gamma-ray emitters. Indications of gamma-ray transient episodes have been reported in at least two systems, Cyg X-1 and Cyg X-3. The identification of additional gamma-ray emitting microquasars is key for a better understanding of these systems. Very-high-energy gamma-ray emission from microquasars has been predicted to happen during periods of transient outbursts potentially connected with the formation of a jet-like outflow. Contemporaneous observations using the H.E.S.S. telescope array and the RXTE satellite were obtained on three microquasars: GRS 1915+105, Circinus X-1 and V4641 Sgr with the aim of detecting a broadband flaring event in the very-high-energy gamma-ray and X-ray bands. We report here on the analysis of these data for each system, including a detailed X-ray analysis assessing the location of the sources in a hardness-intensity diagram during the observations. Finally we discuss the derived upper limits on their very-high-energy gamma-ray flux

    Sensitivity to point-like sources of the ALTO atmospheric particle detector array, designed for 200 GeV\rm 200\,GeV--50 TeV\rm 50\,TeV γ\gamma-ray astronomy

    Full text link
    In the context of atmospheric shower arrays designed for Îł\gamma-ray astronomy and in the context of the ALTO project, we present: a study of the impact of heavier nuclei in the cosmic-ray background on the estimated Îł\gamma-ray detection performance on the basis of dedicated Monte Carlo simulations, a method to calculate the sensitivity to a point-like source, and finally the required observation times to reach a firm detection on a list of known point-like sources.Comment: 16 pages, 7 figures, accepted for publication in JHEAP (Journal of High-Energy Astrophysics

    Astroclimatic Characterization of Vallecitos: A candidate site for the Cherenkov Telescope Array at San Pedro Martir

    Full text link
    We conducted an 18 month long study of the weather conditions of the Vallecitos, a proposed site in Mexico to harbor the northern array of the Cherenkov Telescope Array (CTA). It is located in Sierra de San Pedro Martir (SPM) a few kilometers away from Observatorio Astron\'omico Nacional. The study is based on data collected by the ATMOSCOPE, a multi-sensor instrument measuring the weather and sky conditions, which was commissioned and built by the CTA Consortium. Additionally, we compare the weather conditions of the optical observatory at SPM to the Vallecitos regarding temperature, humidity, and wind distributions. It appears that the excellent conditions at the optical observatory benefit from the presence of microclimate established in the Vallecitos.Comment: 16 pages, 16 figures, Publication of the Astronomical Society of the Pacific, accepte

    NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array

    Full text link
    NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes the photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The camera trigger will be flexible so as to minimize the read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data rate of more than 4 kHz with less than 5\% dead time. The camera concept, the design and tests of the various subcomponents and results of thermal and electrical prototypes are presented. The design includes the mechanical structure, cooling of the electronics, read-out, clock distribution, slow control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie

    The ANTARES Optical Beacon System

    Get PDF
    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented.Comment: 21 pages, 18 figures, submitted to Nucl. Instr. and Meth. Phys. Res.

    The ANTARES Telescope Neutrino Alert System

    Get PDF
    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated for special events, such as two or more neutrinos, coincident in time and direction, or single neutrinos of very high energy.Comment: 17 pages, 9 figures submitted to Astroparticle Physic

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) Îł\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic Îł\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) Îł\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE Îł\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1−101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE Îł\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous Îł\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&
    • 

    corecore